Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters

نویسندگان

  • Aarthi Narayanan
  • Karna Venkata Ramana
چکیده

The production of polyhydroxybutyrate (PHB) by Bacillus sp. is most often growth associated and is influenced by various physico-chemical parameters. Imbalanced nutrient conditions were often found to result in sporulation and low PHB production in Bacillus sp. In the present investigation, Bacillus mycoides DFC1 strain isolated from garden soil was studied for PHB production in glucose–peptone broth. The effect of glucose/peptone ratio on biomass yield, PHB production and sporulation was investigated. Central composite rotatable design was used to study the interactive effects of three variables: glucose, peptone and pH on cell growth and PHB production. The optimized medium conditions with the constraint ‘to maximize’ cell growth and PHB content were glucose 17.34 g/l, peptone 7.03 g/l at pH 7.3. A maximum dry cell weight of 4.35 g/l and PHB yield of 3.32 g/l amounting to 76.32 % (w/w) of dry cell weight with negligible sporulation at the end of 72 h resulted in a significant increase (1.83–3.32 g/l or 1.82-fold) in the production of PHB in comparison to the medium used in preliminary studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Characterization of Polyhydroxybutyrate producing Bacillus cereus and Bacillus mycoides strains

Polyhydroxybutyrate producing bacteria from garden soil were isolated and characterized for their morphological, biochemical properties. Based on their 16S rRNA gene sequences, they were identified as Bacillus mycoides DFC1, Bacillus cereus DC1, Bacillus cereus DC2, Bacillus cereus DC3 and Bacillus cereus DC4. The bacteria were screened for PHB production and compared for the intensity of fluor...

متن کامل

Modeling and Simulation of Polyhydroxybutyrate Production by Protomonas extorquens in Fed-batch Culture

Modeling and simulation of Polyhydroxybutyrate (PHB) production by Protomonas extorquens in fed-batch culture were conducted in this research. The fed-batch model, developed for this process, employed a kinetic model proposed by other researchers. Several kinetic models were investigated to choose the best model. The criterion for this selection was goodness of fit (δ2). Haldane kinetic model w...

متن کامل

Application of Exergy Analysis and Response Surface Methodology (RSM) for Reduction of Exergy Loss in Acetic Acid Production Process

Exergy analysis and response surface methodology (RSM) is applied to reduce the exergy loss and improve energy and exergy efficiency of acetic acid production plant. Exergy analysis is run as a thermodynamic tool to assess exergy loss in reactor and towers of acetic acid production process. The process is simulated in Aspen Plus(v.8.4) simulator and the necessary thermodynamics data for calcula...

متن کامل

Simulation and Model Validation of Batch PHB Production Process Using Ralstonia eutropha

Mathematical modeling and simulation of microbial Polyhydroxybutyrate (PHB) production process is beneficial for optimization, design, and control purposes. In this study a batch model developed by Mulchandani et al., [1] was used to simulate the process in MATLAB environment. It was revealed that the kinetic model parameters were estimated off the optimal or at a local optimal point. There...

متن کامل

Corrugated Box Production Process Optimization Using Dimensional Analysis and Response Surface Methodology

Response surface methodology (RSM) is a statistical method useful in the modeling and analysis of problems in which the response variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a corrugated box production process. The purpose of this research is to create response surface mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012